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LE’ITER TO THE EDITOR 

Dirac quantisation of massive spin-: field 

N S Baaklini and M Tuite 
School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington 
Road, Dublin 4, Ireland 

Received 10 April 1978 

Absl~act. We apply Dirac’s Hamiltonian method to the classical Lagrangian of a free 
massive anticommuring spin-$ field. The anticommutation rules needed in the transition 
to the quantum theory are obtained. 

The classically anticommuting spin-; field plays a significant role in the formulation of 
the locally supersymmetric theory of supergravity (Freedman et a1 1976, Deser and 
Zumino 1976). Incidently, Dirac’s Hamiltonian method of quantising constrained 
systems (Dirac 1964) has been applied to the anticommuting massless spin-; field both 
free (Senjanovic 1977) and interacting with gravity (Teitelboim 1977, Fradkin and 
Vasiliev 1977). However, we have not seen this method applied to the massive field, 
although the Hamiltonian formulation of massive supergravity (Freedman and Das 
1977, Townsend 1977, Baaklini 1977b) has been approached (Deser et a1 1977). 
Moreover, the anticommutation rules needed in the transition to the quantum theory 
have not been given. 

Our purpose in this Letter is to apply Dirac’s method to the massive anticommut- 
ing spin-? field and obtain the anticommutation rules. In the following, we start from 
the classical Lagrangian of the massive free anticommuting spin-; field. We go over to 
the Hamiltonian formulation. The second class constraints obtained in the procedure 
are used to define, through the Dirac brackets (Dirac 1964), the anticommutation 
rules of the quantum theory. 

The classical Lagrangian of an anticommuting, free and massive spin-! field, in the 
form used in massive supergravity (Freedman and Das 1977, Townsend 1977, Baak- 
lini 1977b) is given by 

Our conventions are 

and $: (x) is a classically anticommuting Majorana field obeying the anticommutation 
and reality conditions 

[$:(x), 4%1l+= 0, $, = G, (3 1 
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where C is the charge conjugation matrix, Note that the case of a complex Dirac field 
can easily be done, taking the latter as a complex combination of two Majorana fields. 

The canonical momenta fj:(x) conjugate to $z((x) are defined by making the 
variation 

SL = J d3x +j"(x) S&(x) (4 1 

where the dot means differentiation with respect to time. 
Splitting the Lagrangian (1) into space and time, we obtain 

are regarded as odd elements of a Grassman algebra (Berezin 
can still define consistent classical Poisson brackets for them 
buoni 1976, Baaklini 1977a). 

We define the fundamental Poisson antibrackets 

{fjE(X), ~~~(Y))=S~c,~S3(x-Y). 
The Hamiltonian is 

H = d3x f j  "& - L 

1966). However, one 
(antibrackets) (Casal- 

(8) 

Now from equation (6) we obtain the weakly vanishing (== 0) primary constraints 
Z",fjo,-O 

E2 = f j u  - Z E  ($iiyj75)u == 0. 
k 1 kij - (9) 

These constraints are second class. The Hamiltonian (8) is defined up to the con- 
straints (9) and hence they could be added to it via Lagrange multipliers. The latter 
are determined by the requirement that the constraints have vanishing Poisson 
brackets with the Hamiltonian (constant in time). However, this procedure involves 
technical difficulties and much labour. A simpler procedure is to define immediately 
the Dirac brackets (Dirac 1964), 

if, g)* ={L g)-{f, KiKM-')ij{Kj, gI (10) 

Mij = {Kip Kjl (11) 

for all dynamical variables f and g. Here Mi' is the inverse of the matrix 

for the second class constraints Ki. 
After defining the new brackets (lo), the second class constraints can be put 

strongly equal to zero. Note that this procedure can be done by iteration, taking 
successive subsets of the constraints. 
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Calculating the Poisson bracket of the constraints Eh, we obtain 

The inverse of the resulting matrix is 

Hence, using (lo), we obtain the Dirac brackets 

{ i ~ ( x ) ,  ip(y)}* = -1(~-liyoyj?i)"~ s3(x  - y ) .  

Thus we can eliminate f j L ( x )  from the theory by setting EL equal to zero. 
Requiring that the Poisson bracket of a: ( x )  with the Hamiltonian should vanish, 

we obtain a new constraint 

x a  ( X I  E E iik (YiY5ajGk)a - m ( ( + O i G i  )a z= 0. (15) 

Observe that q o ( x )  has manifested itself as a Lagrange multiplier as noted in Deser 

The secondary constraint x a ( x )  is second class and can be put equal to zero in the 
et a1 (1977). 

same manner as KL ( x ) .  Using the Dirac bracket (14), we obtain 

c ~ ~ ( x ) , x B ( y ) ~ *  = - 3 m * ( i ~ o ~ ) ~ s ~ ~ ( x - y ) ~ ~ ~ s ( x - y ) .  (16) 

Note that in the massless case ( m  = 0), x a ( x )  is a first class constraint and a 

The inverse of the resulting matrix (16) is 
gauge-fixing condition would be needed (Senjanovic 1977). 

2 
NP:(Y - r ) = - ( i ~ - ' y o ) B ~ ~ ~ ( y - z ) .  3m (17) 

Hence, we obtain the doubly new Dirac bracket 

cis ( x  ), 38 (Y I}** 
= { i S ( x ) ,  d?(y)}*-I d3w d 3 2 { i ~ ( x ) , x Y ( z ) } * N ~ ~ ( z - w X X 6 ( w ) ,  $8(y)}* 

= ( -i(c-liyoyjyi>aB -$(ic-'y0yiyi)aB +y( iC- ' yo )aea ia i  
2 

3m 

1 
3m 3m 

After obtaining equation (18), the constraint ,ya(x) can be set equal to zero. The 
term involving I , ! I~ (X )  in the Hamiltonian (8) drops out. Hence the dynamical variables 
of the theory are + ; ( x )  and they obey the fundamental brackets (18). 

The transition to the quantum theory (Dirac 1964) is made by regarding $Ip(x) as 
operators on a state functional. They obey anticommutation rules which are equal to 
(-i) times the brackets (18). 

The path integral corresponding to the quantum theory is the conventional one. 
The situation is very similar to the massive vector meson theory as can be seen by 
comparing with the work of Senjanovic (1976). 

We would like to thank Professor J T Lewis for kind hospitality at the Dublin Institute 
for Advanced Studies. 
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